Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In the age of large-scale galaxy and lensing surveys, such as DESI, Euclid, Roman, and Rubin, we stand poised to usher in a transformative new phase of data-driven cosmology. To fully harness the capabilities of these surveys, it is critical to constrain the poorly understood influence of baryon feedback physics on the matter power spectrum. We investigate the use of a powerful and novel cosmological probe, fast radio bursts (FRBs), to capture baryonic effects on the matter power spectrum, leveraging simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (or CAMELS) project, including IllustrisTNG, SIMBA, and Astrid. We find that FRB statistics exhibit a strong correlation, independent of the subgrid model and cosmology, with quantities known to encapsulate baryonic impacts on the matter power spectrum, such as baryon spread and the halo baryon fraction. We propose an innovative method utilizing FRB observations to quantify the effects of feedback physics and enhance weak-lensing measurements ofS8. We outline the necessary steps to prepare for the imminent detection of large FRB populations in the coming years, focusing on understanding the redshift evolution of FRB observables and mitigating the effects of cosmic variance.more » « lessFree, publicly-accessible full text available April 3, 2026
-
Abstract The circumgalactic medium (CGM) around massive galaxies plays a crucial role in regulating star formation and feedback. Using the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) suite, we develop emulators for the X-ray surface brightness profile and the X-ray luminosity–stellar mass scaling relation, to investigate how stellar and active galactic nucleus (AGN) feedback shape the X-ray properties of the hot CGM. Our analysis shows that at CGM scales (1012≲Mhalo/M⊙≲ 1013, 10 ≲rkpc−1≲ 400), stellar feedback more significantly impacts the X-ray properties than AGN feedback within the parameters studied. Comparing the emulators to recent eROSITA All Sky Survey (eRASS) observations, it is found that stronger feedback than is currently implemented in the IllustrisTNG, SIMBA, and Astrid simulations is required to match the observed CGM properties. However, adopting these enhanced feedback parameters causes deviations in the stellar mass–halo mass relations from observational constraints below the group-mass scale. This tension suggests possible unaccounted-for systematics in X-ray CGM observations or inadequacies in the feedback models of cosmological simulations.more » « lessFree, publicly-accessible full text available May 9, 2026
-
Abstract The baryonic physics shaping galaxy formation and evolution are complex, spanning a vast range of scales and making them challenging to model. Cosmological simulations rely on subgrid models that produce significantly different predictions. Understanding how models of stellar and active galactic nucleus (AGN) feedback affect baryon behavior across different halo masses and redshifts is essential. Using the SIMBA and IllustrisTNG suites from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project, we explore the effect of parameters governing the subgrid implementation of stellar and AGN feedback. We find that while IllustrisTNG shows higher cumulative feedback energy across all halos, SIMBA demonstrates a greater spread of baryons, quantified by the closure radius and circumgalactic medium (CGM) gas fraction. This suggests that feedback in SIMBA couples more effectively to baryons and drives them more efficiently within the host halo. There is evidence that the different feedback modes are highly interrelated in these subgrid models. The parameters controlling the stellar feedback efficiency significantly impact AGN feedback, as seen in the suppression of black hole mass growth and delayed activation of AGN feedback to higher-mass halos with increasing stellar feedback efficiency in both simulations. Additionally, the AGN feedback efficiency parameters affect the CGM gas fraction at low halo masses in SIMBA, hinting at complex, nonlinear interactions between the AGN and supernova feedback modes. Overall, we demonstrate that stellar and AGN feedback are intimately interwoven, especially at low redshift, due to subgrid implementation, resulting in halo property effects that might initially seem counterintuitive.more » « lessFree, publicly-accessible full text available February 4, 2026
-
Abstract Most diffuse baryons, including the circumgalactic medium (CGM) surrounding galaxies and the intergalactic medium (IGM) in the cosmic web, remain unmeasured and unconstrained. Fast radio bursts (FRBs) offer an unparalleled method to measure the electron dispersion measures (DMs) of ionized baryons. Their distribution can resolve the missing baryon problem and constrain the history of feedback theorized to impart significant energy to the CGM and IGM. We analyze the Cosmology and Astrophysics with Machine Learning Simulations using three suites, IllustrisTNG, SIMBA, and Astrid, each varying six parameters (two cosmological and four astrophysical feedback), for a total of 183 distinct simulation models. We find significantly different predictions between the fiducial models of the suites owing to their different implementations of feedback. SIMBA exhibits the strongest feedback, leading to the smoothest distribution of baryons and reducing the sight-line-to-sight-line variance in DMs betweenz= 0 and 1. Astrid has the weakest feedback and the largest variance. We calculate FRB CGM measurements as a function of galaxy impact parameter, with SIMBA showing the weakest DMs due to aggressive active galactic nucleus (AGN) feedback and Astrid the strongest. Within each suite, the largest differences are due to varying AGN feedback. IllustrisTNG shows the most sensitivity to supernova feedback, but this is due to the change in the AGN feedback strengths, demonstrating that black holes, not stars, are most capable of redistributing baryons in the IGM and CGM. We compare our statistics directly to recent observations, paving the way for the use of FRBs to constrain the physics of galaxy formation and evolution.more » « less
-
ABSTRACT Utilizing cosmological hydrodynamic simulations, we quantify the distributions of the dispersion measure (DM) of fast radio bursts (FRBs). We examine the contributions of cold, warm-hot, and hot gas to the total DM. We find that the hot gas component (T > 107K), on average, makes a minor contribution ($$\le 5{{\ \rm per\ cent}}$$) to the overall DM. Cold (T < 105K) and warm-hot (T = 105 − 107K) gas components make comparable contributions to DM for FRBs at z = 1, with the former component making an increasingly larger contribution towards higher redshift. We provide a detailed DM distribution of FRBs at z = 0.25 to z = 2 that may be compared to observations. We also compute the relation between the Compton y parameter and DM, finding a strong correlation, y∝DM4, providing an additional, independent constraint on the nature of the DM of FRBs.more » « less
An official website of the United States government
